Regularity of (0, 1, ..., r-2, r) and $(0, 1, ..., r-2, r)^*$ Interpolations on Some Sets of the Unit Circle

SIQING XIE

Wuhan Institute of Mathematical Sciences, Academia Sinica, Wuhan 430071, People's Republic of China

Communicated by Sherman D. Riemenschneider

Received July 26, 1993; accepted in revised form May 16, 1994

The purpose of this paper is to show regularity of (0, 1, ..., r-2, r) and $(0, 1, ..., r-2, r)^*$ interpolations on the sets obtained by projecting vertically the zeros of $(1-x^2) P_n^{(\alpha,\beta)}(x)$ $(-1) < \alpha$, $\beta \le \frac{1}{2}$, $(1-x) P_n^{(\alpha,\beta)}(x)$ $(-1 < \alpha \le \frac{1}{2}, -1 < \beta \le -\frac{1}{2})$ and $(1+x) P_n^{(\alpha,\beta)}(x)$ $(-1 < \alpha \le -\frac{1}{2}, -1 < \beta \le \frac{1}{2})$ respectively onto the unit circle, where $P_n^{(\alpha,\beta)}(x)$ stands for the *n*th Jacobi polynomial. (3) 1995 Academic Press, Inc.

1. INTRODUCTION

Let $0 = m_0 < m_1 < \cdots < m_q$ be integers, $Z_n = \{z_1, z_2, ..., z_n\}$ be the set of knots on the unit circle, and π_n be the set of polynomials of degree at most n. $(m_0, m_1, ..., m_q)$ interpolation on Z_n can be stated as following: for arbitrary complex numbers $\{c_{m_i,k}; j=0, 1, ..., q, k=1, 2, ..., n\}$, does there exist a polynomial $Q_n \in \pi_{(q+1)n-1}$, satisfying

$$Q_n^{(m_j)}(z_k) = c_{m_i,k}, \qquad j = 0, \ 1, \ ..., \ q, \quad k = 1, \ 2, \ ..., \ n?$$
 (1.1)

If for any set of numbers $c_{m_j,k}$ there exists a unique polynomial $Q_n \in \pi_{(q+1)n-1}$ satisfying (1.1), then we say that $(m_0, m_1, ..., m_q)$ interpolation on Z_n is regular (otherwise, is singular).

In 1960, O. Kis initiated the type of problem for the special knots $Z_n = \{z_k = e^{2\pi i k/n}; k = 1, 2, ..., n\}$, the *n*th roots of unity. He showed that (0, 1, ..., r-2, r) interpolation on Z_n is regular [1]. Later, Sharma [2], [3] extended the results to (0, m) and $(0, m_1, m_2)$ cases. In [4] and [5], Sharma and his associates considered regular, explicit representation and convergence problem of $(m_0, m_1, ..., m_q)$ interpolation on Z_n . It should be noted that the set of knots is always the *n*th roots of unity when one considers $(m_0, m_1, ..., m_q)$ interpolation on the set of the unit circle.

54

0021-9045/95 \$12.00 Copyright © 1995 by Academic Press, Inc. All rights of reproduction in any form reserved Let $P_n^{(\alpha,\beta)}(x)(\alpha > -1, \beta > -1)$ denote the *n*th Jacobi polynomial with the normalization

$$P_n^{(\alpha,\beta)}(1) = \Gamma(\alpha+n+1)/n! \, \Gamma(\alpha+1).$$

Then it is easily seen that the *n*th roots of unity can be obtained by projecting vertically the zeros of $(1-x^2) P_{n/2}^{(1/2, 1/2)}(x)$ (*n* even) or $(1-x) P_{(n-1)/2}^{(1/2, -1/2)}(x)$ (*n* odd) onto the unit circle. Now we ask: is it regular for (0, 1, ..., r-2, r) interpolation on the sets generated by $(1-x^2) P_n^{(\alpha,\beta)}(x)$, $(1-x) P_n^{(\alpha,\beta)}(x)$ and $(1+x) P_n^{(\alpha,\beta)}(x)$ respectively in the same way? In the next section we shall answer this problem for (0, 1, ..., r-2, r) and $(0, 1, ..., r-2, r)^*$ interpolations in the case that the parameters α and β of the Jacobi polynomial $P_n^{(\alpha,\beta)}(x)$ are subject to the conditions respectively

$$-1 < \alpha \leq \frac{1}{2}, \qquad -1 < \beta \leq \frac{1}{2}, \tag{1.2}$$

$$-1 < \alpha \leq \frac{1}{2}, \qquad -1 < \beta \leq -\frac{1}{2}, \qquad (1.3)$$

$$-1 < \alpha \leqslant -\frac{1}{2}, \qquad -1 < \beta \leqslant \frac{1}{2}. \tag{1.4}$$

2. Regularity

Let
$$z_0 = 1$$
, $z_{2n+1} = -1$, and $Z_{2n} = \{z_1, z_2, ..., z_{2n}\}$ satisfy
 $z_k = \cos \theta_k + i \sin \theta_k$, $z_{n+k} = \cos \theta_k - i \sin \theta_k$, $k = 1, 2, ..., n$, (2.1)

where $\{\cos \theta_k; k = 1, 2, ..., n\}$ are the zeros of $P_n^{(\alpha, \beta)}(x)$, with $1 > \cos \theta_1 > \cdots > \cos \theta_n > -1$, and $W(z) = \prod_{k=1}^{2n} (z - z_k)$ and $R(z) = (z^2 - 1) W(z)$. Since the coefficient of the first term of $P_n^{(\alpha, \beta)}(x)$ is [6]

$$\frac{1}{2^n n!} \frac{\Gamma(\alpha + \beta + 2n + 1)}{\Gamma(\alpha + \beta + n + 1)},$$

we know that

$$W(z) = K_n P_n^{(\alpha, \beta)} \left(\frac{1+z^2}{2z}\right) z^n,$$

where

$$K_n = 2^{2n} n! \frac{\Gamma(\alpha + \beta + n + 1)}{\Gamma(\alpha + \beta + 2n + 1)}$$

Using the following relation [7]

$$(1-x^2)\frac{d^2}{dx^2}\left[P_n^{(\alpha,\beta)}(x)\right] + \left[\beta - \alpha - (\alpha + \beta + 2)x\right]\frac{d}{dx}\left[P_n^{(\alpha,\beta)}(x)\right]$$
$$+ n(n+\alpha+\beta+1)P_n^{(\alpha,\beta)}(x) = 0,$$

we obtain

$$W'(z_k) = -\frac{1}{2}K_n(1-z_k^2) z_k^{n-2} P_n^{(\alpha,\beta)'}(\cos\theta_k),$$

$$k = 1, 2, ..., n,$$
(2.2)

$$W'(z_{n+k}) = -\frac{1}{2}K_n(1-z_{n+k}^2) z_{n+k}^{n-2} P_n^{(\alpha,\beta)'}(\cos\theta_k),$$

$$k = 1, 2, ..., n,$$
(2.3)

$$W''(z_k) = [(2n - a - \beta - 2)(1 - z_k^2) + 2(\alpha - \beta) z_k + 2(\alpha + \beta + 1)](1 - z_k^2)^{-1} z_k^{-1} W'(z_k), k = 1, 2, ..., 2n.$$
(2.4)

From Leibniz' formula and (2.4) we have

$$[R(z)^{r-1}]^{(r-1)}|_{z=z_k} = (r-1)! (z_k^2 - 1)^{r-1} [W'(z_k)]^{r-1},$$

$$k = 1, 2, ..., 2n,$$
(2.5)

$$[R(z)^{r-1}]^{(r-1)}|_{z=z_k} = 2^{r-1}(r-1)! z_k^{r-1} W(z_k)^{r-1},$$

$$k = 0, 2n+1,$$
(2.6)

$$[R(z)^{r-1}]^{(r)}|_{z=z_{k}} = (r-1)r! [(n-\frac{1}{2}\alpha-\frac{1}{2}\beta+1)(z_{k}^{2}-1) - (\alpha-\beta)z_{k} - (\alpha+\beta-1)] \\ \times z_{k}^{-1}(z_{k}^{2}-1)^{r-2} [W'(z_{k})]^{r-1}, \\ k = 1, 2, ..., 2n,$$

$$[R(z)^{r-1}]^{(r)}|_{z=z_{k}} = 2^{r-2}(2n+1)(r-1)r! z_{k}^{r} W(z_{k})^{r-1},$$
(2.7)

$$k = 0, \ 2n + 1 \tag{2.8}$$

The main result in this paper is the following

THEOREM 1. (i) If α and β satisfy (1.2) then (0, 1, ..., r-2, r) interpolation on $Z_{2n} \cup \{z_0, z_{2n+1}\}$ is regular;

(ii) If α and β satisfy (1.3) then (0, 1, ..., r-2, r) interpolation on $Z_{2n} \cup \{z_0\}$ is regular;

(iii) If α and β satisfy (1.4) then (0, 1, ..., r-2, r) interpolation on $Z_{2n} \cup \{z_{2n+1}\}$ is regular.

Proof. We only prove (i). The proof of (ii) and (iii) is similar. Obviously, it is sufficient to show the polynomial $Q_n \in \pi_{(2n+2)r-1}$ satisfying

$$Q_n^{(j)}(z_k) = 0, \qquad j = 0, 1, ..., r-2, r, \quad k = 0, 1, ..., 2n+1,$$
 (2.9)

vanishes. We know that $Q_n(z) = R(z)^{r-1} q(z)$ by (2.9), where $q(z) \in \pi_{2n+1}$, by (2.5)–(2.8) and $Q_n^{(r)}(z_k) = 0$, k = 0, 1, ..., 2n+1, we obtain

$$\begin{cases} z_k (1 - z_k^2) q'(z_k) + (r - 1) [(n - \frac{1}{2}\alpha - \frac{1}{2}\beta + 1)(1 - z_k^2) \\ + (\alpha - \beta) z_k + (\alpha + \beta - 1)] q(z_k) = 0, \\ k = 1, 2, ..., 2n, \\ 2q'(1) + (2n + 1)(r - 1) q(1) = 0, \\ 2q'(-1) - (2n + 1)(r - 1) q(-1) = 0. \end{cases}$$
(2.10)

Therefore we can suppose

$$z(1-z^{2}) q'(z) + (r-1)$$

$$\times \left[(n - \frac{1}{2}\alpha - \frac{1}{2}\beta + 1)(1-z^{2}) + (\alpha - \beta)z + (\alpha + \beta - 1) \right] q(z)$$

$$= (a_{0} + a_{1}z + a_{2}z^{2} + a_{3}z^{3}) W(z), \qquad (2.11)$$

where a_0 , a_1 , a_2 and a_3 are constants. Substituting z = 1 or -1 in (2.11) we have

$$\begin{cases} (r-1)(2\alpha-1) \ q(1) = (a_0 + a_1 + a_2 + a_3) \ W(1), \\ (r-1)(2\beta-1) \ q(-1) = (a_0 - a_1 + a_2 - a_3) \ W(-1). \end{cases}$$
(2.12)

Differentiating (2.11) once, then putting z = 1 or -1, from (2.10) we obtain

$$\begin{cases} \frac{1}{2}(r-1)(2\alpha-1)[2-(2n+1)(r-1)] q(1) \\ = [na_0 + (n+1)a_1 + (n+2)a_2 + (n+3)a_3] W(1), \\ -\frac{1}{2}(r-1)(2\beta-1)[2-(2n+1)(r-1)] q(-1) \\ = [-na_0 + (n+1)a_1 - (n+2)a_2 + (n+3)a_3] W(-1), \end{cases}$$
(2.13)

(2.12) and (2.13) imply

$$\begin{cases} a_2 = -\frac{\delta - 1}{\delta + 1} a_0, \\ a_3 = -\frac{\delta}{\delta + 2} a_1, \end{cases}$$

where $\delta = n + \frac{1}{2}(2n+1)(r-1)$. Hence we can write (2.11) as

$$z(1-z^{2}) q'(z) + (r-1) \left[\left(n - \frac{1}{2} \alpha - \frac{1}{2} \beta + 1 \right) (1-z^{2}) + (\alpha - \beta) z + (\alpha + \beta - 1) \right] q(z)$$
$$= a_{0} \left(1 - \frac{\delta - 1}{\delta + 1} z^{2} \right) W(z) + a_{1} \left(1 - \frac{\delta}{\delta + 2} z^{2} \right) z W(z) \qquad (2.14)$$

Solving differential equations (2.14) we get

$$f(z) q(z) = a_0 g(z) + a_1 h(z), \qquad (2.15)$$

where

$$\begin{split} f(z) &= z^{(r-1)(n+1/2\alpha+1/2\beta)} \, (1+z)^{-1/2(r-1)(2\beta-1)} \, (1-z)^{-1/2(r-1)(2\alpha-1)},\\ g(z) &= \int_0^z t^{(r-1)(n+1/2\alpha+1/2\beta)-1} \, (1+t)^{-1/2(r-1)(2\beta-1)-1} \\ &\times (1-t)^{-1/2(r-1)(2\alpha-1)-1} \left(1 - \frac{\delta-1}{\delta+1} \, t^2\right) W(t) \, dt.\\ h(z) &= \int_0^z t^{(r-1)(n+1/2\alpha+1/2\beta)} (1+t)^{-1/2(r-1)(2\beta-1)-1} \\ &\times (1-t)^{-1/2(r-1)(2\alpha-1)-1} \left(1 - \frac{\delta}{\delta+2} \, t^2\right) W(t) \, dt. \end{split}$$

Firstly we suppose that $-1 < \alpha < \frac{1}{2}$ and $-1 < \beta < \frac{1}{2}$. Then

$$f(1) = f(-1) = 0,$$

therefore

$$\begin{cases} a_0 g(1) + a_1 h(1) = 0, \\ a_0 g(-1) + a_1 h(-1) = 0. \end{cases}$$
 (2.16)

Since W(t) has no real zero and W(0) = 1, so W(t) > 0 if t is a real number. This yield.

$$g(1) > 0, \quad h(1) > 0,$$
 (2.17)

$$(-1)^{(r-1)(n+1/2\alpha+1/2\beta)}g(-1) < 0, \qquad (-1)^{(r-1(n+1/2\alpha+1/2\beta)}h(-1) > 0.$$
(2.18)

It follows from (2.16)–(2.18)

$$a_0 = a_1 = 0$$

If $\alpha = \frac{1}{2}$, we have

$$f(1) < +\infty, \qquad g(1) = +\infty, \qquad h(1) = +\infty,$$

hence we can also derive $a_0 = a_1 = 0$ from (2.15). Similar result can be obtained in the case $\beta = \frac{1}{2}$. Up to now we have shown that $q(z) \equiv 0$. Hence $Q_n(z) \equiv 0$.

This completes the Proof of Theorem 1.

Now we consider the problem of $(0, 1, ..., r-1, r)^*$ interpolation defined analogously in [8] on $Z_{2n} \cup \{z_0, z_{2n+1}\}$, that is to decide whether or not there exists a unique polynomial $Q_n \in \pi_{(2n+2)r-3}$ satisfying

$$\begin{aligned} Q_n^{(j)}(z_k) &= c_{jk}; \qquad j = 0, \ 1, \ ..., \ r-2, \quad k = 0, \ 1, \ ..., \ 2n+1, \\ Q_n^{(r)}(z_k) &= c_{rk}; \qquad k = 1, \ 2, \ ..., \ 2n, \end{aligned}$$

where $\{c_{jk}\}$ is an arbitrary set of numbers. By the similar method to the proof of theorem 1 we can prove

THEOREM 2. If α and β satisfy (1.2), then $(0, 1, ..., r-2, r)^*$ interpolation on $Z_{2n} \cup \{z_0, z_{2n+1}\}$ is regular.

Remark. The condition (1.2)-(1.4) may be removed in theorem 1 and 2. Unfortunately, the technique in the present paper does not seem to answer this question. Moreover, in another paper we have obtained convergence of $(0, 1, 3)^*$ interpolation on $Z_{2n} \cup \{z_0, z_{2n+1}\}$ in the case $\alpha = \beta = 0$.

REFERENCES

- 1. O. Kts, Remarks on interpolation, Acta Math. Acad. Sci. Hungar. 11 (1960), 49-64. [in Russian]
- 2. A. SHARMA, Lacunary interpolation in the roots of unity, Z. Angew. Math. Mech. 46 (1966), 127-133.
- 3. A. SHARMA, Some remarks on lacunary interpolation in the roots of unity, Israel J. Math. 2 (1964), 41-49.
- 4. A. S. CAVARETTA, A. SHARMA, AND R. S. VARGA, Hermite-Birkhoff interpolation in the nth roots of unity, Trans. Amer. Math. Soc. 259 (1980), 621-628.
- 5. S. D. RIEMENSCHNEIDER AND A. SHARMA, Birkhoff interpolation at the *n*th roots of unity: Convergence, *Canad. J. Math.* 33 (1981), 362-371.
- 6. I. P. NATASON, "Constructive Theory of Functions," Gostekhizdat, Moscow, 1949.
- G. SZEGÖ, "Orthogonal Polynomials," Amer. Math. Soc. Colloq. Publ., Vol. 23, Amer. Math. Soc., Providence, RI, 1959.
- A. K. VARMA, An analogous of a problem of J. Balazs and P. Turan, III, Trans. Amer. Math. Soc. 146 (1969), 107-120.