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The purpose of this paper is to show regularity of (0, I, .... r- 2, r) and
(0, I, .... r - 2. r)* interpolations on the sets obtained by projecting vertically the
zeros of (l-x')p;,'·IIi(x) (-I)<a. fJ~~), (l-x)P;,'./Jl(X) (-I<il~~, -1<
fJ ~ -~) and (I + x) p;".IIi(x) ( -1 < a ~ -~. -I < fJ ~~) respectively onto the unit
circle, where p~,.PI(X) stands for the nth Jacobi polynomial. 1995 Academic

Press, Inc.

I. INTRODUCTION

Let 0=mO<m 1 < ... <mq be integers, Z,,= {=j, =2' ..., =,,} be the set of
knots on the unit circle, and 7r" be the set of polynomials of degree at
most n. (mo, m l , ... , m q ) interpolation on Z" can be stated as following: for
arbitrary complex numbers {cm ,. k; ) = 0, I, ... , g, k = I, 2, ... , n}, does there
exist a polynomial Q" E 7r 1q + 1),,- I' satisfying

Q(m,)(~ } - C
n ,;".k - ·mJ,k' )=0, I, ..., g, k=I,2, ...,n? (1.1 )

If for any set of numbers cm). k there exists a unique polynomial Q" E

7r(q+ 11"- I satisfying (1.I), then we say that (m o, m l , ... , mq ) interpolation
on Z" is regular (otherwise, is singular).

In 1960, O. Kis initiated the type of problem for the special knots
Z" = {=k = e21lik

/"; k = I, 2, ... , n}, the nth roots of unity. He showed that
(0, 1, ... , r - 2, r) interpolation on Z" is regular [1]. Later, Sharma [2],
[3] extended the results to (0, m) and (0, m I' m 2 ) cases. In [4] and [5],
Sharma and his associates considered regular, explicit representation and
convergence problem of (mo, m l , ..., m q ) interpolation on Z". It should be
noted that the set of knots is always the nth roots of unity when one
considers (m o, m 10 ... , m q ) interpolation on the set of the unit circle.
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Let P;,x,Pl(x)(a.> -I, fJ> -I) denote the nth Jacobi polynomial with
the normalization

P~,OC,fJ)( I) = T(a. + n + 1)/n! T(a. + I),

Then it is easily seen that the nth roots of unity can be obtained by
projecting vertically the zeros of (l-x2) p;,~/~2,1/2)(X) (n even) or (I-x)
p::/2'11)~21(X) (n odd) onto the unit circle, Now we ask: is it regular for
(0, I, "', r-2, r) interpolation on the sets generated by (I-x 2) P~,X,fJ)C'(),

(I-x) p~,x,IJ)(x) and (I +x) P;,oc,PI(x) respectively in the same way? In the
next section we shall answer this problem for (0, I, ''', r - 2, r) and (0, I, "',
r - 2, r)* interpolations in the case that the parameters a. and {J of the
Jacobi polynomial P~,x, Pl( x) are subject to the conditions respectively

-I<a.~~, -I<{J~L (1,2)

-I<a.~~, -I <fJ~ -L (1.3)

-I <a.~ -~, -1<fJ~~, ( 1.4)

2, REGULARITY

::k = cos f)k + i sin f)k, ::" +k = cos f)k - i sin Ok' k = 1,2, ",,11, (2,1)

where {cos (}k; k = 1, 2, .", n} are the zeros of P;,oc, III( x), with I > cos (} I >
,,, >cosO

Il
> -I, and W(::)=n~'::l (::-::d and R(::)=(::2_1) WI::),

Since the coefficient of the first term of P~,X, fll(x) is [6]

1 T( a. + fJ + 2n + I )
2"11! T(a.+fJ+n+ I)'

we know that

(
I + _2)

~(-)=K pix,PI --~. ::"
.... II If 2z '

where

K = 2211n! T(a.+{J+n+l)
II T(CI.+fJ+2n+l)
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Using the following relation [7]

d 2
. d

(1 - x 2) dx 2 [P~,'·lil(X)] + [fJ - ex - (ex + fJ + 2)x] dx [P~,',·fl)(x)]

+ n(n + c/.. + fJ + I) p~".ln(x)= 0,

we obtain

W'(':k) = - ~KII( I - .:~) .:Z - 2 P~," Il}' (cos Od,

k = I, 2, ... , n,

W'(':II+d = - !KII (1- ':;'+k) .:;;~~ P~," Iii' (cos Od,

k= 1,2, "., n,

W" (:;d = [ (2n - a - /J - 2)( I - :;n+ 2( ex - /1) :;k

+2(ex+fi+l)](1-.:~) I':k 'W'(.:d,

k = 1,2, ".,211.

From Leibniz' formula and (2.4) we have

(2.2)

(2.3 )

(2.4)

[R(.:)"JI' '11=~=,=(r_I)!(.:~_I)'-J[W'(.:d]'-l,

k = I, 2, "., 2n, (2.5)

[R(.:)' ']I'-'II=~;,=2'-'(r-l)!.:~ 'W(.:d ' -',

k=O, 2n+ I, (2.6)

[R(.:)' 1]111 I=~=, = (I' -I) r! [(n- iex- ifJ + I )(.:~ -I)

- (ex - fJ)':k - (ex + fJ -1)]

x':
k
J(.:~-I)'-2[W'(.:dJ'-',

k = I, 2, "., 2n, (2.7)

[ R(.: )'- I ] I I) I=~ =, = 2I - 2(2n + I )( I' - I ) r! .: ~ W(.: k )' - I,

k=O, 2n+ I (2.8)

The main result in this paper is the following

THEOREM I. (i) (f ex and fJ satiJ!V (1.2) then (0, I, "., I' - 2, 1') inter
polation on 2 211 u {=o, ':211 +d is regular;

(ii) If ex and IJ sati.lfv (1.3) then (0,1, ".,1'-2,1') interpolation on
2 211 U {':o} is regular;

(iii) If ex and /J satiJ!v (1.4) then (0, I, "., I' - 2, r) interpolation on
2 211 U {=211+ d is regular.
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Proof We only prove (i). The proof of (ii) and (iii) is similar.
Obviously, it is sufficient to show the polynomial Q" E n 12" + 2)/ _ I satisfying

j=O, 1, ...,1'-2, r, k=O, 1, ...,211+ 1, (2.9)

vanishes. We know that Q,,(.:) =R(.:)'-l q(.:) by (2.9), where q(.:) E n 2" + 1,

by (2.5)-(2.8) and Q;;l(':k) =0, k=O, 1, ... ,211+1, we obtain

{

':d 1 - .:~) ~'(':kl + (r -1 )[~11- !.oc ~!~+ 1)(1- .:~)
+(oc {J)-k+(OC+{J I)Jq(-d-O,

k= 1,2, .. " 211,
2q'(1 ) + (211 + 1)( I' - 1) q( 1) = 0,
2q'(-I)-(211+ 1)(I'-I)q(-I)=O.

Therefore we can suppose

(2.10)

.:( 1 - .:2) q' (.:) + (I' - 1)

x [(11- ~oc - ~Jj + 1)(1 - .:2) + (oc - {J).: + (oc + {J - I)J q(.:)

(2.11 )

where ao, aI' a2 and a, are constants. Substituting.:= lor -1 in (2.11)
we have

Differentiating (2.11) once, then putting.: = 1 or - 1, from (2.10) we obtain

{
~( I' - 1)( 20c - 1 )[ 2 - (211 + 1 )( r - 1) Jq( 1)

I =[l1ao+(I1+I)a l +(11+2)a2 +(11+3)ad W(1), (2.13)
- 2( r - 1)( 2Jj - 1)[2 - (211 + 1)( r - 1)Jq( - 1)

= [ - lUI 0 + (11 + 1 ) a I - (11 + 2) a 2 + (11 + 3 ) a 3] W( - 1),

(2.12) and (2.13) imply
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where 0 = n + !(2n + I)(r - I). Hence we can write (2.11) as

.:(1 - .:2) q'(.:) + (r - I) r(n - ~ (X - ~ fJ + I) (I _ .:2)

+ ((X - fJ) Z + (ex. + fJ - 1)1q( z)

( 15 - I ') (c5,)=ao l-o+I Z - W(z)+a l l-
o

+
2

z- .:W(z)

Solving differential equations (2.14) we get

f(.:) q(.:) = a og(.:) + al h(.:),

where

(2.14)

(2.15)

f( z ) = Zl' - I )(" + 1/20: + 1/2fi) (I + .:) -- 1/21' -- 1)( 2[1 - I I ( 1 _.:) - 1/21' - I )( 2tx - II,

g(.:) = rtl,-I)I,,+ 1/20:+ 1/2[11-1 (I + t) 1/21' 1)(2[1-1)- I

o

(
0-1 )x(l_t)-1/2I,-1)120:-1)-1 1--- t 2 W(t)dt.
c5+1

h(.:) = J: t l , 1)111+1/2,'+1/211 1(1 +t)--1/2I,-1)(2/i-I)-1

x(l-t)-1/2I' 1)(20:-1) 1(I-J~2t2)W(t)dt.

Firstly we suppose that -1 < IX < ! and -1 < fJ <!. Then

f( 1) = f( - 1) = 0,

therefore

tao g(1) + a j h(l) = 0,

aog( - I ) + a I h( - I )= O.
(2.16)

Since W( t) has no real zero and W( 0) = 1, so W( t) > 0 if t is a real number.
This yield.

g(l) > 0, h(l) > 0, (2.17)

(-I )1'-1)("+ 1/20:+ 1/2[1) g( -I) < 0, (-I )11"--11,,+ 1/20:+ 1/2111 h( -I) > O.

(2.18 )
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It follows from (2.16 )-( 2.18 )

ao=a 1 =0.

If IX = !, we have
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f(1) < +00, g( 1) = +oc, h(l) = +OJ,

hence we can also derive ao= a I =°from (2.15). Similar result can be
obtained in the case p=!. Up to now we have shown that q(:::) =:: 0. Hence
Q,,(:::) =::0.

This completes the Proof of Theorem 1.

Now we consider the problem of (0, 1, ... , r -1, r)* interpolation defined
analogously in [8] on 2 2"u {:::o, :::2,,+ I}, that is to decide whether or not
there exists a unique polynomial Q" E n12" + 2) r _ 3 satisfying

Q~J(:::k) = Cjk;

Q~;)(:::k) = Crk;

j = 0, 1, , r - 2, k = 0, I, ..., 2n + 1,

k = I, 2, , 2n,

where {Cjk} is an arbitrary set of numbers. By the similar method to the
proof of theorem I we can prove

THEOREM 2. If IX and p satisfy (1.2), then (0, 1, ... , r - 2, r)* interpola
tion on 2 2" u {:::o, :::211+ d is regular.

Remark. The condition (1.2)-( 1.4) may be removed in theorem I and 2.
Unfortunately, the technique in the present paper does not seem to answer
this question. Moreover, in another paper we have obtained convergence of
(0, I, 3)* interpolation on 2 2" u {:::o, :::2n+ I} in the case IX =P= o.
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